Effects of insulin on ovine fetal leucine kinetics and protein metabolism.

نویسنده

  • J R Milley
چکیده

Fetuses of eight pregnant ewes (114-117 d of gestation) were used to study whether fetal insulin concentration affects fetal protein accretion and, if so, whether such changes are caused by effects on protein synthesis or protein breakdown. Fetal leucine kinetics were measured by infusion of [1-14C]leucine during each of three protocols: (I) low vs. normal insulin concentration; (II) low vs. high insulin concentration; and (III) low vs. high insulin concentration during amino acid infusion to keep leucine concentration constant. Fetal leucine concentration (233 +/- 20 vs. 195 +/- 18 microM) and clearance (48.3 +/- 4.4 vs. 54.2 +/- 5.5 ml/kg per min) were the only aspects of fetal leucine kinetics that changed during protocol I. During protocol II, insulin infusion decreased fetal leucine concentration (222 +/- 22 vs. 175 +/- 22), decreased fetal leucine disposal (11.63 +/- 0.89 vs. 12.55 +/- 0.89 mumol/kg per min), increased leucine clearance (48.0 +/- 4.2 vs. 57.6 +/- 6.5 ml/kg per min), decreased leucine decarboxylation (1.77 +/- 0.17 vs. 2.04 +/- 0.21 mumol/kg per min), decreased nonoxidative leucine disposal (9.81 +/- 0.78 vs. 10.51 +/- 0.74 mumol/kg per min), decreased release of leucine from fetal protein (7.43 +/- 1.08 vs. 8.38 +/- 0.84 mumol/kg per min), but did not change the accretion of leucine into protein. In contrast, when leucine concentrations (205 +/- 25 vs. 189 +/- 23) were maintained (protocol III), insulin infusion did not change fetal leucine disposal, decarboxylation, or nonoxidative disposal although leucine clearance still rose (55.4 +/- 5.0 vs. 64.4 +/- 5.9 ml/kg/min). Fetal release of leucine from protein, however, decreased (7.46 +/- 0.83 vs. 8.57 +/- 0.71 mumol/kg per min) and the accretion of leucine into protein increased (3.27 +/- 0.30 vs. 1.80 +/- 0.32 mumol/kg/min). These findings show that insulin decreases fetal protein breakdown. If insulin-induced hypoaminoacidemia occurs, protein synthesis decreases so that no net accretion of protein occurs. If fetal amino acid concentrations are maintained, however, insulin itself does not affect protein synthesis, and fetal protein accretion increases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucose and amino acid kinetic response to graded infusion of rhIGF-I in the late gestation ovine fetus.

Insulin-like growth factor I (IGF-I) has anabolic effects and is thought to be important in fetal development. The present study was designed to determine the dose response of recombinant human (rh) IGF-I on ovine fetal glucose and amino acid kinetics. Chronically catheterized fetal lambs were studied at 122-127 days gestation. The kinetics of leucine, phenylalanine, and glucose were measured b...

متن کامل

Protein anabolic effects of insulin and IGF-I in the ovine fetus.

We determined the effect of insulin and/or recombinant human (rh)IGF-I infusion on ovine fetal phenylalanine kinetics, protein synthesis, and phenylalanine accretion. The chronically catheterized fetal lamb model was used at 130 days gestation. All studies were performed while fetal glucose and amino acid concentrations were held constant. Experimental infusates were 1). saline, 2). rhIGF-I plu...

متن کامل

Ovine fetal leucine kinetics and protein metabolism during decreased oxygen availability.

The fetus depends on an uninterrupted supply of oxygen to provide energy, not only for basal metabolism but also for the metabolic costs of growth. By curtailing the metabolically expensive processes of protein turnover, the fetus could conserve energy when oxygen availability is limited. Therefore, this investigation was performed to find whether protein synthesis and breakdown are diminished ...

متن کامل

Effect of rhIGF-I infusion on whole fetal and fetal skeletal muscle protein metabolism in sheep.

Insulin-like growth factor I (IGF-I) has been shown to have significant anabolic effects in the regulation of fetal protein metabolism. To investigate the tissue-specific effects of IGF-I on fetal skeletal muscle metabolism, we infused recombinant human (rh) IGF-I directly into the hindlimb of nine chronically catheterized, late-gestation fetal sheep. Substrate balance and amino acid kinetics w...

متن کامل

Anabolic effects of insulin and IGF-I in the ovine fetus are reduced by prolonged maternal fasting.

Fetal nutritional stress may result in intrauterine growth restriction and postnatal insulin resistance. To determine whether insulin resistance can begin in utero, we subjected late-gestation (130-135 days) ewes to 120 h of complete fasting and compared the results with our previous work in fed ewes (38). We determined the effect of insulin and/or recombinant human (rh)IGF-I infusion on ovine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 93 4  شماره 

صفحات  -

تاریخ انتشار 1994